
Protocol Archive Test plan

Protocol Archive Test Plan
for the Swift Mission

HEASARC

Laboratory for High Energy Astrophysics, NASA/GSFC, Code 662, Greenbelt, MD 20771

24 October 2002

1

1 Introduction

This document describes the planned tests to exercise the end to end archive protocol. This
includes : transferring data, moving data to the final archive location, initiating the database
ingest. A different test plan was developed to specifically test the DTS transfer protocol.

While the software to transfer data, DTS, is common to all sites, the software that archives
the data and ingests databases may use procedures already in place at the different sites. This
depends on how the hardware is locally configured with respect to the staging area and the type
of database system in use.

The HEASARC has developed a package named Data Archive System (DAS) to move data from
the staging area to the final archive location. It is configurable in terms of disk name and can be
re-used by different sites providing that the disk space for the final archive location is accessible
from the DTS machine by a single mount point. Similar to DTS, it has the capability to spawn
scripts to initiate other processing. Other sites can either install the DAS as it is or re-use parts.

In distribution there is also a package that contains scripts to ingest databases into the EXOSAT
DBMS browse systems that may be re-usable with other sites.

All sites participating to this test should have already installed DTS and have procedures in
place to archive the data and to ingest databases. They can join the test even with a partial
procedure in place and the same test will be repeated.

The software DTS, DAS and database scripts are available at the following web address:

http : //legacy.gsfc.nasa.gov/dts/dts.html

If questions arise concerning the usage of the listed software or a bug is discovered in the course
of testing, please contact micah@milkyway.gsfc.nasa.gov . Provide a detailed description and
associated log files if applicable.

2 Overall Archive Procedure

Below is the description of the overall archive procedure as currently implemented at HEASARC.
This consists of three steps.

• The first step is the data transfer. This is achieved via DTS that transfers data from the
sending site to the receiving site. The data arrives in a staging area of the receiving site.
The DTS software is common to all sites.

• The second step is to move the data from the staging area into the final archive location.
This is achieved via DAS, which is initiated within DTS via the DTS flag ’type’. Depending
on the ’type’ value, DAS moves data into the appropriate directory for that ’type’. If the
incoming data set is a newer revision of the same data set already present in the archive, it
replaces the latter with the newer version. The older version is moved into a timestamped
directory in the backup location. DAS keeps logs of all these activities. DAS, like DTS,
uses the ’type’ to initiate other operations. The disks for the final archive location of the
data needs to be accessible from the DTS machine by a single mount point.

2

• The third step is to ingest the database tables in the database system and to connect the
data to the entries in the database tables. This is done via the database system ingest
(DBSI). This is initiated by a DAS-spawned script that copies the database table into a
working directory and sends an email to an address monitored by procmail. The working
directory is assumed to be on disks mounted on the DTS machine. The email initiates
the database ingest procedure. This creates tables suitable for the HEASARC database
systems Sybase and EXOSAT DBMS (Browse), ingests the tables, saves the incoming
tables to a backup directory and keeps logs of the overall operation. A second email
initiated by a different DAS-spawned script to an address monitored by procmail starts
the indexing of the data file in the archive that are then associated with the entries in the
database table. The latter procedure is necessary to allow the data retrieval via the web
browser. Most of these procedures depend on the database system and how each site has
organized the ingest procedure locally.

3 Test Summary & What to download

3.1 Test Summary

There are several types of tests to verify the Swift archive procedure. These are :

3

• Ingest of different type of data sets and database tables. This exercises the usage of the
’type’ flag in DTS and in the subsequent archive procedures.

• Ingest of different sizes of datasets to exercise the time necessary to complete the archive
of different size data sets. In some tests, data are sent almost simultaneously, while other
tests data are sent in intervals separated by several hours.

• Ingest of a data set processed with a newer software version that replaces an existing
data set. This exercises the replacement procedure as well as the ability to correctly keep
records of incoming and backed up data.

• Ingest a PGP encrypted data set to ensure that encryption does not cause unforeseen
problems with the archive procedure.

• Simulate failures in the archive procedure or database ingest due to hardware momenta-
neously unavailable.

3.2 What to download

To exercise the entire archive procedure, the receiving site should have in place mechanisms to
transfer the data, move data in the final archive location, to ingest the database tables and to
link the data to tables. To transfer the data all sites should have already installed DTS. If the
receiving site adopts DAS for their archival operation, this software should be downloaded and
set-up as described in the following sections. If the receiving site uses the EXOSAT DBMS
as database system, there is available software to ingest tables. The table ingest software
installation and set-up it is described in a separate document. The software (DTS, DAS &
the database ingest) is available at

http : //legacy.gsfc.nasa.gov/dts/dts.html

There is no software available to link the data to the database tables, since it is specific to how
the archive data center provides data to the users via their local interface.

The sending site on the other hand does not need any additional software besides DTS.

All sites (receiving & sending) need to download the test bed.

4 Test Bed

To carry out these tests the following data sets are available:

• Databases

• Production data (varying size and revision)

• TDRSS messages

The simulated database tables have as content the fields described in the HEASARC-SDC
ICD. Date, positions and some other quantities are arbitrary, however the numbering of the
observations follows the observation number scheme adopted for Swift.

4

The simulated Swift observing log, known as as-flown timeline and described in the MOC-SDC
ICD, is a test file generated by Omitrom. Each delivery of this table is just an update, always
unique, to previous deliveries. To simulate the append and replace procedures for the database
ingest two additional files are available.

The datasets (production data and TDRSS messages) are make-overs of existing files taken from
the HEASARC archive where the root of the filename has been changed accordingly to the root
name in use for Swift. The content of each data set is arbitrary and it is made up of files to
reach a specific size.

The data sets and database tables are available together with this test plan at :
http : //legacy.gsfc.nasa.gov/dts/dts.html

Retrieve the archive test bed from the website:

http : //legacy.gsfc.nasa.gov/dts/protect/archtest.tar.gz

Make a test bed directory and unpack the files into that directory:

gunzip -c archtest.tar.gz | tar xvf -

The top level of the test bed directory should contain the following:

config/

db/

obs/

tdrss/

trend/

The test bed contains data, database tables, scripts and associated file lists for use in the testing
procedure.

5 Software Setup and Installation

5.1 DAS Setup & Installation

Download the DAS software, and untar it in the home directory of the DTS operator account
(e.g. dtsops). The das.config file must then be edited to reflect the specifics of the local site.
In particular, LOGDIR, DESTDIR, BAKDIR, and INVBAKDIR must be modified to reflect
valid pathnames on the host machine, and it is recommended that MAILERR be set to the DTS
operator account so all error messages go to the same account. The remaining variables may be
left as their default values.

For example, if the path to the main disk is /local/swift, the following structure is suggested.

DESTDIR="/local/swift/data"

BAKDIR="/local/swift/bak"

INVBAKDIR="/local/swift/bak/inv"

Note, these directories must be created before executing the DAS.

The recommended location for LOGDIR depends on the setting for DTS IN and DTS OUT in

5

dts.config. Preferably these log directories should be contained within a common directory. For
example,

dts.config:

DTS_IN="/local/swift/log/in"

DTS_OUT="/local/swift/log/out"

das.config:

LOGDIR="/local/swift/log/das"

Replace the dts.scripts file in your DTS installation with the one provided in the ’config’ directory
of the test bed.

The general process is to transfer data with DTS, and based on the ’type’ trigger the script
set in the dts.scripts file. In this case, the triggered script will always be das.pl with suitable
flags. After DAS archives the file to the appropriate directory, the types in the das.scripts file
trigger other scripts which are included in the scripts directory found in the DAS distribution
or your own scripts patterned after the included example.pl script. Which scripts you use are
based primarily on the requirements of your local database.

In the ’config’ directory of the test bed, there are two type/script definition files for DAS.
The das.scripts file contains the standard setup for HEASARC where dbnotify.pl copies the
database file to an incoming directory based on the database name and emails an account which
is monitored with procmail, triggering the ingest. For types that don’t involve the database,
startdpl.pl is used, which emails the location of the recently archived data for action by another
monitoring process. If your site has a similar setup, modify dbnotify.pl and startdpl.pl to reflect
the appropriate email and directory structure in the section at the top of the scripts labelled
”Local configuration.” Then, replace the installed das.scripts file in the das directory with the
das.scripts.db file from the test bed.

If, however, your database ingest has different requirements, for the purpose of this test, use
the das.scripts.mailonly file to replace the standard das.scripts file. For all types, a script called
simplemail.pl mails the arguments passed on by das.pl. Edit the email in simplemail.pl to reflect
the email of the tester.

If the DAS has been installed in a place other than the recommended location (i.e. the DTS
operator home directory), the das.scripts file must be modified to reflect the correct path.

DAS Setup Checklist:

• Untar DAS package into ∼/das

• Replace existing dts.scripts with version from test bed

• Edit ∼/das/das.config

• If using the HEASARC db mechanism:

– Replace ∼/das/das.scripts with das.scripts.db

– Edit ∼/das/scripts/dbnotify.pl
– Edit ∼/das/scripts/startdpl.pl

6

• Otherwise if using the mailonly method:

– Replace ∼/das/das.scripts with das.scripts.mailonly

– Edit ∼/das/scripts/simplemail.pl

6 Testing

Each test will use the following general steps:

FROM SITE1 send to SITE2: dts -se SITE2 -t TYPE [-l files|-f filelist]

SITE2 RECEIVING MODE : dts -g

SITE1 may run ”dts -g” at any time to clean the staging area of successfully transferred files.

The intent is to test the automated sequence of transfer, archive, and ingest from end to end.
Each site must have a contact person so that tests may be coordinated between sites. After
each test is sent, an email must be sent to the receiving site’s contact person so ”dts -g” may
be run. The email message must contain the identifier for the test that is being run, listed as
”Test: TEST NAME” in the procedures below. Once the files have been retrieved, archived and
ingested, the test participant at the receiving site must check the MAILERR account for error
messages and verify that the data was properly archived or databases properly ingested.

After all testing is completed, the staging areas may be cleaned out to save disk space, however,
we request that you retain the contents of the log directories, as they contain valuable information
on transfer rate, etc.

Note that the test procedures are written primarily from the perspective of the sending site.
Instructions for to the receiving site are preceded by ”Receiving site:”.

6.1 Different ’type’

This suite of send operations tests the ability to trigger based on different types.

Change (cd) to the ’db’ directory in the test bed.

Test: DBASE ALL

The following DTS commands must be run before contacting the receiving site. The intent is
to test the receiving site’s ability to receive multiple unique database tables at once and ingest
them despite the concurrency of their arrival.

dts -se SITE2 -t Proddatadb -l tb_swiftobs.tdat

dts -se SITE2 -t Tdrssdb -l tb_swifttdrss.tdat

dts -se SITE2 -t Xrtconfdb -l tb_swiftxrlog.tdat

dts -se SITE2 -t Uvotconfdb -l tb_swiftuvlog.tdat

dts -se SITE2 -t Batconfdb -l tb_swiftbalog.tdat

dts -se SITE2 -t Timelinedb -l tb1_swiftlog.tdat

A simple shell script, dball.sh has been provided in the ’db’ directory to simplify the execution
of this test. Usage: ./dball.sh SITE2

7

Receiving site: The first task is to ensure that the archive directories and the database are
completely empty. It may also be helpful to clean DTS’s in and out directories as well the DAS
log directory. After running ”dts -g” verify that all databases have been ingested properly. If
the simplemail.pl method is being used, verify that there are 6 new mail messages corresponding
to each database file. An example of the kind of message to expect follows:

To: tester@lab.somewhere

Subject: Data Archived

TYPE: Tdrssdb

CMMT: swifttdrss

DEST: /local/swift/data/dbtmp

FILES:

./tb_swifttdrss.tdat

Test: DBASE ADD

The following test is only meaningful if a database ingest mechanism is actually present at the
receiving site, rather than the mail-only method. Most databases associated with this project
are ingested as a replacement for the existing database, however, the timeline database appends
each ingest to the existing database. In order to test this append process, run:

dts -se SITE2 -t Timelinedb -l tb2_swiftlog.tdat

Receiving site: Run ”dts -g” and verify that the data has been appended to the previously
ingested table from tb1 swiftlog.tdat. The database should contain 16 rows total, 8 from
DBASE ALL and 8 from the current test.

Test: DBASE RPL

Once again, the following test is only meaningful if a database ingest mechanism is actually
present at the receiving site. It exercises the case where the incoming table is intended to
completely replace the current database table.

dts -se SITE2 -t Batconfdb -l tb2_swiftbalog.tdat

Receiving site: Run ”dts -g” and verify that the data has been replaced in the swiftbalog table.
The database should contain 7 rows total. The original tb swiftbalog.tdat file from DBASE ALL
contains 10 rows. The current table, tb2 swiftbalog.tdat is smaller by 3 rows, all the rows with
a start time on 2002-04-06 are removed. An inspection of the database should verify 7 rows with
none having a start time on that day.

Test: TDRSS MSG

This test concerns only data, TDRSS messages. Change to the ’tdrss’ directory in the test bed.

dts -se SITE2 -t Tdrss -f list.txt

Receiving site: Run ”dts -g” and verify that the data has been copied to the archive in the
tdrss/00100001 directory. View the dasinv Tdrss.log file in the DAS log directory, and verify
that an ”IN” entry for 00100001 has been written. In general, a line in the inventory log contains
entries for IN or OUT, a timestamp, an identifier, the revision, and the full path to the new data.

8

An email should also be sent from startdpl.pl or simplemail.pl depending on the das.scripts file
used.

6.2 Different sizes

This test uses data sets of varying size to determine the scalability of the system. The observation
number 00100001001 is 1 GB in size, while 00100001002 is 0.5 GB and 00100001003 is 0.1 GB.

Change to the ’obs’ directory in the test bed.

Test: PROD 001

dts -se SITE2 -t Proddata -f list001.txt

Receiving site: Run ”dts -g” and verify that the data has been copied to the obs/00100001001
directory. Also, check the dasinv Proddata.log file for a new IN entry and that a corresponding
email has been delivered.

Test: PROD 002

dts -se SITE2 -t Proddata -f list002.txt

Receiving site: Run ”dts -g” and verify that the data has been copied to the obs/00100001002
directory. Also, check the dasinv Proddata.log file for a new IN entry and that a corresponding
email has been delivered.

Test: PROD 003

In order to prepare the version for the test after this one, run the following shell script from the
’obs’ directory:

./oldrev.sh

Then, perform the dts send:

dts -se SITE2 -t Proddata -f list003.txt

Receiving site: Run ”dts -g” and verify that the data has been copied to the obs/00100001003
directory. Also, check the dasinv Proddata.log file for a new IN entry and that a corresponding
email has been delivered.

6.3 Reprocessed data set

The following tests exercise the revision checking mechanism of the DAS. The Proddata and
Tdrss types have a revision file pattern associated with them (’sw[0-9]+ tapeċat’). A file name
matching that pattern will be checked for the revision keys, PROCVER and SEQPNUM.
PROCVER is of the form X.Y.Z and SEQPNUM is an integer padded with zeroes to make
three digits. If the revision of the archive data is earlier than the revision of the incoming data,
the existing data set is moved into a backup directory, and the new one is moved into the proper
location. If, however, the archive data is newer or equivalent to the incoming data, an error
occurs.

9

Test: PROD UPD

This test exercises the usual case where a new data set replaces the old. In its original state,
the test bed uses the revision: PROCVER=1.8.0, SEQPNUM=005. There is another version of
the tape.cat file which has the revision: PROCVER=2.1.5, SEQPNUM=001.

Change to the test bed’s ’obs’ directory. Run the shell script:

./newrev.sh

Alternatively, NEWsw00100001003 tape.cat.gz may be manually copied over the existing
sw00100001003 tape.cat.gz file in the 00100001003/dir1 directory.

dts -se SITE2 -t Proddata -f list003.txt

Receiving site: Run ”dts -g” and verify that the new data has been copied to the obs/00100001003
directory and the old data is backed up in a timestamped directory in the BAKDIR. Also, check
the dasinv Proddata.log file for a new IN entry for the new data and an OUT entry for old data.
Also, verify that the corresponding email is delivered.

Test: PROD OLD

This test exercises the case when an incoming data set has instead an older revision of what
currently present in the archive. This event should not normally occur. If the test is successful
the archive should not change.

Run the shell script:

./oldrev.sh

Alternatively, OLDsw00100001003 tape.cat.gz may be manually copied over the existing
sw00100001003 tape.cat.gz file in the 00100001003/dir1 directory.

From the test bed’s ’obs’ directory, run the command:

dts -se SITE2 -t Proddata -f list003.txt

Receiving site: Run ”dts -g” and verify the error message email. No change will be made to the
archive.

6.4 PGP data set

Test: PROD PGP

This test exercises the requirement to keep data pgp-encrypted for a period early in the SWIFT
mission. The test is to verify that the encryption does not break any of the steps of the archival
software.

Change to the ’obs/pgp’ directory in the test bed and run the following command:

dts -se SITE2 -t Proddata -f list003.txt

Receiving site: Run ”dts -g” and verify that the new data has been copied to the obs/00100001003
directory and the old data is backed up in a timestamped directory in the BAKDIR. Also, check

10

the dasinv Proddata.log file for a new IN entry for the new data and an OUT entry for old data.
Note: The new pgp data has the revision: PROCVER=3.0.0, SEQPNUM=001 A corresponding
email should also be received.

6.5 Simulate failure

Test: DAS FAIL

If the hardware to archive the data is temporarily not available, this causes a failure in the
archive procedure. To simulate this occurence the directory name location is arbitrarly changed
to a non-existent location.

Run the shell script:

./badrev.sh

Alternatively, BADsw00100001003 tape.cat.gz may be manually copied over the existing
sw00100001003 tape.cat.gz file in the 00100001003/dir1 directory.

From the test bed’s ’obs’ directory, run the command:

dts -se SITE2 -t Proddata -f list003.txt

Receiving site: DON’T run ”dts -g” yet. First DESTDIR in das.config must be set to a bad
directory. Since the DTS operator should not have permission to create a directory in the root
directory, a suitable setting would be.

#DESTDIR="/local/swift/data"

DESTDIR="/baddir"

Note that the existing value is commented out, so one may revert back to the correct setting
easily. Now, run ”dts -g” and verify the error message email. It should give an error of the
form: ”ERROR: CHECK DEST – Failed to create file: /baddir/.nfstest [pid]”. No change will
be made to the archive.

To recover from the failure, restore DESTDIR to its correct setting. The log file mentioned in
the email has a corresponding .in file in the same directory, which contains the das.pl command
that must be re-run by using the syntax source file.in. The archive operation should now
complete successfully.

Test: DBSTG FAIL

This test applies only if the local site is using the dbnotify method. The dbnotify.pl script copies
the database table to a directory, and then sends an email to an address monitored by procmail.
When the mail is received a script is executed which ingests the table. In the standard case, the
machine running the DAS is different from the machine running the ingest script. Therefore,
a common directory must be mounted on both hosts. This procedure tests the case where the
disk containing that common directory is unavailable to the machine running DAS.

From the ’db’ directory in the test bed, run the command:

dts -se SITE2 -t Proddatadb -l tb_nohea_swiftobs.dat

11

Receiving site: DON’T run ”dts -g” yet. First the $dbhold variable in dbnotify.pl must be set
to a bad directory. Since the DTS operator should not have permission to create a directory in
the root directory, a suitable setting would be.

#my($dbhold) = "/dba_dbase/work";

my($dbhold) = "/baddir";

Note that the existing value is commented out, so one may revert back to the correct setting
easily. Now, run ”dts -g” and verify the error message email. It should give an error indicating
that dbnotify.pl failed to run. No change will be made to the database.

To recover from the failure, restore $dbhold to its correct setting. The log file mentioned in the
email has a corresponding .in file in the same directory, which contains the das.pl command that
must be re-run by using the syntax source file.in. The database ingest should now complete
successfully.

A HEASARC DB Setup

All sites receiving databases for ingesting will have their own site-specific considerations based
on the database system used. Therefore, the tests described in this document use general terms
when discussing database ingesting. The HEASARC database ingest procedure is described
below.

The HEASARC setup automates the database ingest of all planned Swift database tables. DTS
transfers the database tables from the sending site, then hands off control to DAS with executes
the dbnotify.pl script. This script places the newly delivered TDAT file into
/dba dbase/work/$TABLE/incoming/, then sends an email to an account which has the follow-
ing procmail recipe associated with it:

MAILDIR = $HOME/Mail # Make sure directory exists

DEFAULT = $MAILDIR/mbox

LOGFILE = $MAILDIR/procmail.log

LOGABSTRACT = all

VERBOSE = on

SHELL = /bin/sh

MY_ADDR = "from@host.lab"

CRON_NOTIFY = "dbops@host.lab"

SWIFT_NOTIFY = "swiftops@host.lab"

TABLELIST = "(swifttdrss|swiftobs|swiftlog|swiftbalog|swiftuvlog|swiftxrlog)"

UCTABLELIST = "(SWIFTTDRSS|SWIFTOBS|SWIFTLOG|SWIFTBALOG|SWIFTUVLOG|SWIFTXRLOG)"

:0

* ^From(:.*|)(dbops|swiftops|dtsops)@.+\.host\.lab\>

* $ ^Subject:[]*\/$TABLELIST

* ! ^X-Loop:

* $ MATCH ?? ()\/$TABLELIST

* $ TABLELIST ?? ()\/$\MATCH

12

{

TABLE=$MATCH

:0

* $ TABLE ?? ()\/$UCTABLELIST

* $ UCTABLELIST ?? ()\/$\MATCH

{

UCTABLE=$MATCH

:0 fbi

| /dba_dbase/work/$TABLE/update-$TABLE.pl

:0 fhwi

| formail -I Apparently-To: \

-I Resent- \

-I"To: $CRON_NOTIFY, $SWIFT_NOTIFY" \

-I"From: $UCTABLE Automated Updater <$MY_ADDR>" \

-I"Subject: Re: $TABLE" \

-I"Reply-To: $CRON_NOTIFY" \

-I"X-Loop: $MY_ADDR"

:0

! -t

}

}

The procmail recipe executes /dba dbase/work/$TABLE/update-$TABLE.pl (included with
tdat2browse-and-perl-tools.tar.gz) which then handles the database ingest. If the database in-
gest cannot be successfully completed within one hour, e-mail is sent notifying the appropriate
persons of the error.

With the exception of SWIFTLOG, if multiple TDAT files are present in the incoming directory
when update-$TABLE.pl executes, update-$TABLE.pl will process the file with the most recent
timestamp and archive any other TDAT files present in the old files directory. This assumes that
TDAT files that are delivered at a later time should supercede any previously delivered TDAT
file. It’s possible that this may not always be true if there are problems with the data processing
or e-mail delivery, but this has been deemed to be an acceptable risk. In such a scenario, the
correct TDAT file must be copied from the old files directory to the incoming directory and
the update-$TABLE.pl program must be run manually in order to correct the problem. Since
TDAT deliveries are expected to occur only once per day, this is not expected to be a common
problem.

SWIFTLOG is different because any newly delivered TDAT files are supposed to be appended
to the database table instead of replacing the database table completely. With SWIFTLOG,
update-swiftlog.pl processes the TDAT file with the most recent timestamp. Any other TDAT
files located in the incoming directory are left there for additional invocations of update-
swiftlog.pl. (There should be one e-mail and hence one invocation of update-swiftlog.pl per
TDAT file that is copied to the swiftlog/incoming directory.)

13

